Indicative Conditionals

Counterfactuals

Logic, Probability and Indicative Conditionals

Marco Degano

Philosophical Logic 2025 3 December 2025

Readings

Suggested:

- ► E. Adams, *The Logic of Conditionals* (1975), esp. Ch. 1–3.
- ► E. Adams, A Primer of Probability Logics (1996)
- ► Lewis, D. (1976). Probabilities of conditionals and conditional probabilities. In IFS: Conditionals, Belief, Decision, Chance and Time (pp. 129-147).

- 1. Indicative Conditionals
- 2. Probability and Logic
- 3. Conditional Probability
- 4. Lewis Triviality
- 5. Counterfactuals

Juliilie

- 1. Indicative Conditionals
- 2. Probability and Logic
- 3. Conditional Probability
- 4. Lewis Triviality
- 5. Counterfactuals

Warm-up Puzzle

Indicative Conditionals

"If it is sunny, I bike to work."

Over the last 100 workdays, you kept stats:

	went by bike (q)	didn't go by bike $(\neg q)$
sunny (p)	8	12
not sunny $(\neg p)$	7	73

How 'true' is your claim "If it is sunny, I bike to work."?

Intuitively, you look only at the days when it was sunny:

$$P(q \mid p) = \frac{8}{8+12} = \frac{8}{20} = 40\%.$$

If we identified it with the material conditional $p \supset q \equiv \neg p \lor q$, the latter is false only on days with $p \wedge \neg q$ (sunny but didn't go by bike), i.e. 12 out of 100 days. So $P(\neg p \lor q) = 1 - P(p \land \neg q) = 1 - \frac{12}{100} = 88\%$.

But it is absurd. Our intuitive evaluation tracks $P(q \mid p)$, not the material conditional $\neg p \lor q$.

Lewis Triviality

- Subjunctive / counterfactual conditionals: usually about non-actual or contrary-to-fact situations.
- Indicative conditionals: usually about epistemic uncertainty about the actual world.
- (1)If Oswald hadn't shot Kennedy, then someone else would a. have.
 - b. $\varphi \leadsto \psi$ (counterfactual)
- (2)If Oswald didn't shoot Kennedy, then someone else did. a.
 - b. $\varphi \to \psi$ (indicative)
 - Counterfactuals: "What would have happened, if ..." (non-truth-functional, possible-worlds semantics).
 - Indicatives: "Given what we know, if ..., then ..." (good candidates for a probabilistic treatment).

From classical logic:

$$\varphi \to \psi \stackrel{?}{\equiv} \varphi \supset \psi \equiv \neg \varphi \lor \psi \equiv \neg (\varphi \land \neg \psi).$$

We do seem to accept some inferences that look material:

Or-to-if:

$$\varphi \lor \psi \models \neg \varphi \to \psi$$

Not-and-to-if:

$$\neg(\varphi \land \psi) \models \varphi \rightarrow \neg \psi$$

Moreover, to preserve modus ponens for indicatives:

$$\rightarrow$$
-to- \supset : $\varphi \rightarrow \psi \models \varphi \supset \psi$

For Identifying Indicative with Material Conditional

Ad absurdum conditionals are compelling:

(3) If you can run 100 km without stopping, I will eat my hat.

We take this as a good way to argue:

- We are confident that I will not eat my hat.
- So (by contrapositive reasoning) we conclude that you cannot run 100 km without stopping.

Material implication validates such reasoning patterns naturally.

Gibbard's Collapse Theorem

Indicative Conditionals

- (P1) $\varphi \to \psi \models \varphi \supset \psi$ (assumption)
- (P2) If $\varphi \models \psi$, then $\models \varphi \rightarrow \psi$ (Conditional Proof)
- (P3) $\varphi \to (\psi \to \chi) \equiv (\varphi \land \psi) \to \chi$ (Import-Export)
 - (1) $(\varphi \supset \psi) \rightarrow (\varphi \rightarrow \psi) \equiv ((\varphi \supset \psi) \land \varphi) \rightarrow \psi$ (instance of (P3))
 - (2) $((\varphi \supset \psi) \land \varphi) \rightarrow \psi$ (since $(\varphi \supset \psi) \land \varphi \models \psi$ and (P2))
 - (3) $(\varphi \supset \psi) \rightarrow (\varphi \rightarrow \psi)$ (by (1) and (2))
 - (4) $(\varphi \supset \psi) \rightarrow (\varphi \rightarrow \psi) \models (\varphi \supset \psi) \supset (\varphi \rightarrow \psi)$ (by (P1))
 - (5) $(\varphi \supset \psi) \supset (\varphi \rightarrow \psi)$ (by (3) and (4))
 - (6) $\varphi \supset \psi \models \varphi \rightarrow \psi$ (by Deduction Theorem)

From (P1) and (6) we obtain mutual entailment between $\varphi \to \psi$ and $\varphi \supset \psi$, hence equivalence.

Let q = "It rains", p = "The proof is wrong".

Classically:

$$q \models p \supset q$$
 and $\neg p \models p \supset q$

So whenever it is raining, the material conditional $p\supset q$ is true, and whenever the proof is correct, $p\supset q$ is also true.

But in ordinary language:

- ► If the proof is wrong, it is raining.
- ► If the proof is not wrong, it is raining.

sound unjustified or bizarre in most contexts. Material implication makes any true consequent or any false antecedent make the conditional true.

Strict Implication

Indicative Conditionals

Another idea is to analyze indicative conditionals as *strict* implications:

$$\square(\varphi\supset\psi)\quad\text{or more explicitly:}\quad\forall w\in W:\text{ if }w\models\varphi,\text{ then }w\models\psi.$$

But this does not remove the paradoxes:

$$\Box q \models \Box(p \supset q) \qquad \Box \neg p \models \Box(p \supset q)$$

So we get *paradoxes of strict implication* parallel to the material ones: if q is necessary, then necessarily "if p, then q", etc.

- 1. Indicative Conditionals
- 2. Probability and Logic
- 3. Conditional Probability
- 4. Lewis Triviality
- 5. Counterfactuals

Why Bring in Probability?

Two roles for conditionals:

Indicative Conditionals

- ▶ Truth-conditions: what makes a conditional true or false.
- ▶ Reasoning / assertibility: when it is rational to accept or assert a conditional.

Rather than asking "what makes If φ , ψ true?", we ask:

When is it rational to assert If φ , ψ ?

Probabilities give a measure of *degree of belief*. So we look at a probability as a candidate for the degree of acceptability of the indicative conditional.

Events and Probability Spaces

Indicative Conditionals

A *probability space* is a triple $(\Omega, \mathcal{F}, \Pr)$ where:

- $ightharpoonup \Omega \neq \emptyset$ is a *sample space* (set of possible outcomes).
- $ightharpoonup \mathcal{F} \subset \mathcal{P}(\Omega)$ is a set of *events*, closed under
 - complements: if $A \in \mathcal{F}$ then $\Omega \setminus A \in \mathcal{F}$;
 - finite unions: if $A, B \in \mathcal{F}$ then $A \cup B \in \mathcal{F}$.
- ▶ $Pr : \mathcal{F} \rightarrow [0,1]$ is a *probability measure* such that:
 - 1. $Pr(\Omega) = 1$;
 - 2. if $A, B \in \mathcal{F}$ and $A \cap B = \emptyset$, then $\Pr(A \cup B) = \Pr(A) + \Pr(B)$.

Conditional Probability

Examples: Events and Their Probabilities Example 1: Fair coin

$$\mathcal{F} = \mathcal{P}(\Omega) = \{\emptyset, \{H\}, \{T\}, \Omega\}.$$

▶
$$\Pr(\{H\}) = \Pr(\{T\}) = \frac{1}{2}$$
.

Then, for instance:

$$\Pr(\Omega) = 1, \qquad \Pr(\emptyset) = 0, \qquad \Pr(\{H\} \cup \{T\}) = \frac{1}{2} + \frac{1}{2} = 1.$$

Example 2: Fair die

•
$$\Omega = \{1, 2, 3, 4, 5, 6\}.$$

• $\mathcal{F} = \mathcal{P}(\Omega).$

▶
$$\Pr(\{\omega\}) = \frac{1}{6}$$
 for each $\omega \in \Omega$.

Let

$$E = \{\text{even}\} = \{2, 4, 6\}, \qquad P = \{\text{prime}\} = \{2, 3, 5\}.$$

15/71

Then

Conditional Probability

Often we want the probability of an event *given* that another event has occurred.

Example (fair die):

Indicative Conditionals

- ▶ Let $E = \{\text{even}\} = \{2, 4, 6\}.$
- ▶ Let $P = \{\text{prime}\} = \{2, 3, 5\}.$

Suppose we learn that the outcome is even (E). What is the probability that it is also prime (P)?

$$P(P \mid E) = \frac{\text{number of outcomes in } P \cap E}{\text{number of outcomes in } E} = \frac{|\{2\}|}{|\{2,4,6\}|} = \frac{1}{3}$$

for
$$P(B) > 0$$
,

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$

Chain Rule for Probabilities

Two events:

Indicative Conditionals

$$P(A \land B) = P(A) \cdot P(B \mid A)$$

Conditional Probability

whenever P(A) > 0.

Three events:

$$P(A \land B \land C) = P(A) \cdot P(B \mid A) \cdot P(C \mid A \land B)$$

provided all the conditional probabilities are defined.

For events A_1, \ldots, A_n :

$$P(A_1 \wedge \cdots \wedge A_n) = P(A_1) \cdot P(A_2 \mid A_1) \cdots P(A_n \mid A_1 \wedge \cdots \wedge A_{n-1})$$

Lewis Triviality

From Events to Probabilities of Sentences

So far, probabilities live on *events* $A, B \in \mathcal{F}$ in a space $(\Omega, \mathcal{F}, \Pr)$ (coins, dice, etc.).

In probabilistic semantics, we now want to talk about probabilities of sentences in a propositional language \mathcal{L} :

▶ Intuitively, each sentence $\varphi \in \mathcal{L}$ corresponds to an event:

$$[\varphi] := \{\omega \in \Omega : \omega \models \varphi\}$$

▶ Rather than carrying $(\Omega, \mathcal{F}, \Pr)$ around explicitly, we *abstract away* from it and work directly with a probability function on the language

$$P:\mathcal{L}\to\mathbb{R}$$
.

which is required to behave like \Pr on the associated events $[\varphi]$.

Probabilities: Axioms

Fix a propositional language $\mathcal L$ (closed under $\neg,\wedge,\vee)$ and classical consequence \models .

Definition (Probability function)

A probability function P on a propositional language $\mathcal L$ is a function $P:\mathcal L\to\mathbb R$ such that, for all $\varphi,\psi\in\mathcal L$:

- 1. $P(\varphi) \ge 0$.
- 2. If $\models \varphi$ (i.e. φ is a tautology), then $P(\varphi) = 1$.
- 3. If $\models \neg(\varphi \land \psi)$ (i.e. φ and ψ are mutually exclusive), then

$$P(\varphi \lor \psi) = P(\varphi) + P(\psi).$$

- ▶ For every φ , $P(\varphi) \in [0,1]$. (From (1) and (2) applied to $\varphi \vee \neg \varphi$.)
- ▶ If φ and ψ are logically equivalent ($\models \varphi \leftrightarrow \psi$), then $P(\varphi) = P(\psi)$.

Some Useful Facts

Indicative Conditionals

Complement: $P(\neg \varphi) = 1 - P(\varphi)$

By (2), $P(\varphi \vee \neg \varphi) = 1$. By (3), and the fact that φ and $\neg \varphi$ are mutually exclusive.

$$P(\varphi \vee \neg \varphi) = P(\varphi) + P(\neg \varphi).$$

So
$$1 = P(\varphi) + P(\neg \varphi)$$
, hence $P(\neg \varphi) = 1 - P(\varphi)$

Conjunction never more probable than its conjuncts:

$$P(\varphi \wedge \psi) \leq P(\varphi)$$

$$P(\varphi) = P((\varphi \wedge \psi) \vee (\varphi \wedge \neg \psi)) = P(\varphi \wedge \psi) + P(\varphi \wedge \neg \psi)$$

hence

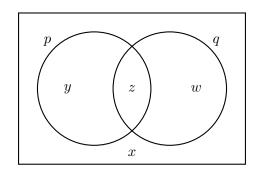
$$P(\varphi \wedge \psi) = P(\varphi) - P(\varphi \wedge \neg \psi) \le P(\varphi)$$

Disjunction (on blackboard): $P(\varphi \lor \psi) = P(\varphi) + P(\psi) - P(\varphi \land \psi)$

Venn Diagram Representation

Indicative Conditionals

It is often convenient to represent probabilities by means of Venn diagrams.



$$P(p)=y+z \qquad P(p\wedge q)=z \qquad P(p\vee q)=y+z+w$$
 and $x+y+z+w=1.$

Truth-Preserving Inference and Probability

Conditional Probability

Classical consequence:

$$\Gamma \models_{CL} \psi$$

In every classical valuation, if all sentences in Γ are true, then ψ is true.

Viewed probabilistically, this suggests:

If all premises in Γ are *certain*, the conclusion should also be certain.

Formally, for any probability function P on \mathcal{L} :

$$(\forall \gamma \in \Gamma : P(\gamma) = 1) \implies P(\psi) = 1$$

But what if the premises do *not* have probability 1, only something close to 1? We want a probabilistic analogue of validity that tells us how much probability can be "lost" from premises in Γ to a conclusion ψ .

Indicative Conditionals

Counterfactuals

Probabilities Can Decrease Along Valid Inference Consider the valid inference:

$$p \lor q, \ p \supset q \models_{CL} q$$

Conditional Probability

For an arbitrary probability function P, we can compute P(q) in terms of the premises:

$$P(q) = P(p \lor q) + P(p \supset q) - 1$$

$$P(p \lor q) = P(q) + P(p \land \neg q),$$

$$P(p \supset q) = P(\neg(p \land \neg q)) = 1 - P(p \land \neg q)$$

Eliminating $P(p \land \neg q)$ yields

$$P(q) = P(p \lor q) + P(p \supset q) - 1$$

So in this special case the probabilities of the premises determine the probability of the conclusion.

Lewis Triviality

Probabilities Can Decrease Along Valid Inference

In general, from a valid inference we usually get only **bounds** on $P(\psi)$ in terms of the premises.

For example, from $p \supset q$, $p \models_{CL} q$ one can show (**blackboard**):

If
$$P(p \supset q) = a$$
 and $P(p) = b$, then $a + b - 1 \le P(q) \le a$.

In particular, if both premises are very probable, $P(p \supset q) \ge 1 - \epsilon$ and $P(p) \ge 1 - \epsilon$, then $P(q) \ge 1 - 2\epsilon$.

Lewis Triviality

For sentences φ , ψ the following are equivalent:

- 1. $\varphi \models_{CL} \psi$.
- 2. For every probability function $P, P(\varphi) \leq P(\psi)$.
- 3. For every P and every $\epsilon \geq 0$: $P(\varphi) \geq 1 \epsilon \Rightarrow P(\psi) \geq 1 \epsilon$

Indicative Conditionals

If $\varphi \models_{CL} \psi$, then $\varphi \land \neg \psi$ is classically inconsistent, so $P(\varphi \land \neg \psi) = 0$. Hence

$$P(\varphi) = P(\varphi \wedge \psi) + P(\varphi \wedge \neg \psi) = P(\varphi \wedge \psi) \leq P(\psi).$$

So $P(\varphi) < P(\psi)$ for every probability function P.

Lewis Triviality

Classical Entailment and Probability: $(2 \Rightarrow 3)$

Assume (2): for every probability function $P, P(\varphi) \leq P(\psi)$.

Now let P be any probability function and $\epsilon \geq 0$ such that

$$P(\varphi) \ge 1 - \epsilon$$
.

By (2),
$$P(\varphi) \leq P(\psi)$$
, so $P(\psi) \geq P(\varphi) \geq 1 - \epsilon$.

Thus

$$P(\varphi) \ge 1 - \epsilon \implies P(\psi) \ge 1 - \epsilon$$

for every P and every $\epsilon \geq 0$.

Classical Entailment and Probability: $(3 \Rightarrow 1)$

Assume (3). We argue by contraposition.

Suppose $\varphi \not\models_{CL} \psi$.

Indicative Conditionals

Then there is a valuation v with $v(\varphi) = 1$ and $v(\psi) = 0$.

(3) says something must hold for *every* probability function P and every $\epsilon \geq 0$. So to falsify (3), it is enough to build *one* specific P and *one* specific ϵ for which the implication fails.

Conditional Probability

We define a probability function P_v by:

$$P_v(\theta) = \begin{cases} 1 & \text{if } v(\theta) = 1, \\ 0 & \text{if } v(\theta) = 0. \end{cases}$$

Then $P_v(\varphi) = 1$ and $P_v(\psi) = 0$.

Take, for example, $\epsilon = \frac{1}{2}$. We have

$$P_v(\varphi) = 1 \ge 1 - \frac{1}{2}, \text{ but } P_v(\psi) = 0 \not\ge 1 - \frac{1}{2}.$$

Lewis Triviality

From One Premise to Many Premises

For
$$\Gamma = \{\gamma_1, \dots, \gamma_n\}$$
,
$$\Gamma \models_{CL} \varphi \quad \text{iff} \quad \forall P \, \forall \epsilon \geq 0: \, \forall i, \, P(\gamma_i) \geq 1 - \epsilon \, \Rightarrow \, P(\varphi) \geq 1 - n\epsilon$$

- \blacktriangleright Each premise may be false with probability at most ϵ .
- ▶ in the worst case, the "errors" in different premises do not overlap, so the total error in the conclusion can grow to at most $n\epsilon$.
- this uses only very weak probabilistic assumptions (no independence).1

¹Under extra assumptions like independence, the bound can be sharpened (e.g. to $(1-\epsilon)^n$), but the general $1-n\epsilon$ bound already characterizes classical consequence.

Indicative Conditionals

So far we have looked at how the probability of a conclusion can be *lower* than the probabilities of the premises in a valid inference.

Conditional Probability

It is often more convenient to track not "how probable" a sentence is, but "how much room there is for it to be wrong":

$$U_P(\varphi) := P(\neg \varphi) = 1 - P(\varphi)$$

- $ightharpoonup U_P(\varphi)$ is the *risk of error* in accepting φ .
- ▶ If $P(\varphi)$ is close to 1, then $U_P(\varphi)$ is small: φ is very safe to rely on.
- If we reason from premises Γ to a conclusion ψ , we would like the uncertainty of ψ to be bounded by the *total* uncertainty we take on in accepting Γ .

This suggests the following probabilistic counterpart to truth-preserving validity:

In a good inference, the "error" in the conclusion should be no greater than the *sum* of the errors in the premises.

Probabilistic Entailment

Indicative Conditionals

Patrick Suppes (1922–2014)

Ernest W. Adams (1926–2009)

Probabilistic entailment \models_P

$$\Gamma \models_P \varphi \quad \text{iff} \quad \forall P : U_P(\varphi) \le \sum_{\gamma \in \Gamma} U_P(\gamma)$$

The uncertainty of the conclusion is no greater than the total uncertainty of the premises.

Adams notion

Indicative Conditionals

$$\Gamma \models_P \varphi \quad \text{iff} \quad \forall P: \ U_P(\varphi) \leq \sum_{\gamma \in \Gamma} U_P(\gamma)$$

Adams-style:

$$\Gamma \models_a \varphi \text{ iff } \forall \epsilon > 0, \ \exists \delta > 0 \text{ s.t.}$$

$$\forall P: \ (\forall \gamma \in \Gamma: P(\neg \gamma) \leq \delta) \Rightarrow P(\neg \varphi) \leq \epsilon$$

Whenever your premises are mostly correct within some tolerance δ , your conclusion will also be mostly correct within a tolerance ϵ .

Probabilistic Consequence (Adams, Theorem 3)

(a)
$$\Gamma \models_{CL} \varphi$$
 iff (b) $\Gamma \models_{P} \varphi$ iff (c) $\Gamma \models_{a} \varphi$

From Classical to P

Recall:

Indicative Conditionals

$$\Gamma \models_P \varphi \quad \text{iff} \quad \forall P: \ U_P(\varphi) \leq \sum_{\gamma \in \Gamma} U_P(\gamma),$$

where $U_P(\alpha) := P(\neg \alpha)$.

Assume $\Gamma = \{\gamma_1, \dots, \gamma_n\}$ is finite and $\Gamma \not\models_P \varphi$. Then there is some Psuch that

$$U_P(\varphi) > \sum_{\gamma \in \Gamma} U_P(\gamma)$$

i.e.

$$P(\neg \varphi) > \sum_{i=1}^{n} P(\neg \gamma_i)$$

so
$$1 > P(\varphi) + \sum_{i=1}^{n} P(\neg \gamma_i)$$

From Classical to P

Indicative Conditionals

$$\neg \bigwedge \Gamma \equiv \neg \gamma_1 \lor \dots \lor \neg \gamma_n,$$

so by subadditivity

$$P(\neg \bigwedge \Gamma) \le \sum_{i=1}^{n} P(\neg \gamma_i)$$

By subadditivity again,

$$P(\neg \bigwedge \Gamma \lor \varphi) \le P(\neg \bigwedge \Gamma) + P(\varphi) \le \sum_{i=1}^{n} P(\neg \gamma_i) + P(\varphi)$$

But $\Lambda \Gamma \supset \varphi$ is classically equivalent to $\neg \Lambda \Gamma \lor \varphi$, so

$$P(\bigwedge \Gamma \supset \varphi) = P(\neg \bigwedge \Gamma \lor \varphi) \le \sum_{i=1}^{n} P(\neg \gamma_i) + P(\varphi) < 1$$

Thus $\Lambda \Gamma \supset \varphi$ is not a tautology, so $\Gamma \not\models_{CL} \varphi$.

From P to Adams

Indicative Conditionals

Assume $\Gamma \models_P \varphi$ and let $\Gamma = \{\gamma_1, \dots, \gamma_n\}$. Fix $\epsilon \geq 0$ and set

$$\delta := \frac{\epsilon}{n}$$

Now take any probability function P such that

$$P(\neg \gamma_i) \leq \delta$$
 for all $i = 1, \dots, n$

Then

$$P(\neg \varphi) = U_P(\varphi) \le \sum_{i=1}^n U_P(\gamma_i) = \sum_{i=1}^n P(\neg \gamma_i) \le n \cdot \delta = \epsilon$$

Since for every ϵ we have found such a δ , it follows that $\Gamma \models_a \varphi$.

Assume $\Gamma \not\models_{CL} \varphi$. Then there is a valuation v with

$$v(\gamma) = 1$$
 for all $\gamma \in \Gamma, v(\varphi) = 0$

View v as a probability function P_v :

$$P_v(\theta) := \begin{cases} 1 & \text{if } v(\theta) = 1, \\ 0 & \text{if } v(\theta) = 0. \end{cases}$$

Then

Indicative Conditionals

$$P_v(\gamma) = 1$$
 for all $\gamma \in \Gamma$ $P_v(\varphi) = 0$

SO

$$P_v(\neg \gamma) = 0 \text{ for all } \gamma \in \Gamma \quad P_v(\neg \varphi) = 1$$

Fix, for example, $\epsilon = \frac{1}{2}$. For any $\delta \geq 0$ we have

$$\forall \gamma \in \Gamma, \ P_v(\neg \gamma) = 0 \le \delta$$

Conditional Probability

but

Indicative Conditionals

$$P_v(\neg \varphi) = 1 > \epsilon$$

Thus for this ϵ there is no δ making the Adams condition true: the antecedent holds for P_v , while the consequent fails. Hence $\Gamma \not\models_a \varphi$. Indicative Conditionals

- We have introduced several probabilistic consequence relations on a propositional language \mathcal{L} .
- ► Adams' theorem: All these probabilistic notions induce exactly classical consequence on \mathcal{L} .
- ▶ An inference is classically valid iff, for *every* probability function P, the *error* in the conclusion is never greater than the *total error* already accepted in the premises.
- In what follows we adopt the following as our default notion of probabilistic entailment:

$$\Gamma \models_P \varphi \quad \text{iff} \quad \forall P: \ U_P(\varphi) \leq \sum_{\gamma \in \Gamma} U_P(\gamma)$$

- When we enrich the language with expressions for conditional probabilities $P(\psi \mid \varphi)$, the induced consequence relation \models_P is not equivalent to classical logic.
- But it validates exactly the rules of System P, which we encountered in similarity analysis of counterfactuals and non-monotonic logic!

Outline

- 1. Indicative Conditionals
- 2. Probability and Logic
- 3. Conditional Probability
- 4. Lewis Triviality

Material Conditional and Probability

Take the degree of belief in an indicative conditional If φ , ψ to be $P(\varphi \supset \psi)$.

But this does not match how confident we actually are in such conditionals.

Consider a uniformly random card from a standard 52-card deck. Let

$$r :=$$
 "the card is red" $k :=$ "the card is a king"

How confident should we be in:

If the card is red, it is a king

Intuitively, this should be given by the conditional probability:

$$P(k \mid r) = \frac{\text{number of red kings}}{\text{number of red cards}} = \frac{2}{26} = \frac{1}{13}$$

If we identify the indicative with the material conditional $r \supset k$, then

If we identify the indicative with the material conditional
$$r \supset k$$
, then
$$P(r \supset k) = P(\neg r \lor k) = P(\neg r) + P(k) - P(\neg r \land k) = \frac{26}{52} + \frac{4}{52} - \frac{2}{52} = \frac{28}{52} = \frac{7}{13}$$

Adams' thesis: The assertability of an indicative conditional $\varphi \to \psi$ is given by the conditional probability $P(\psi \mid \varphi)$.

We extend the language with a conditional → satisfying Adams' constraint

$$P(\varphi \to \psi) = P(\psi \mid \varphi)$$

(defined whenever $P(\varphi) > 0$).

Indicative Conditionals

If we do not allow embedded conditionals (no \rightarrow inside φ or ψ). Adams (1975) shows:

Theorem (Adams, Theorem 3.5 and Theorem 4.2)

The consequence relation induced by Adams' probabilistic semantics for (non-embedded) indicative conditionals coincides with system P.

Modus Ponens via \models_P

Indicative Conditionals

Recall probabilistic entailment:

$$\Gamma \models_P \chi \quad \text{iff} \quad \forall P: \ U_P(\chi) \leq \sum_{\gamma \in \Gamma} U_P(\gamma),$$

where $U_P(\alpha) := P(\neg \alpha)$.

$$\varphi, \ \varphi \to \psi \models_P \psi$$

That is, for every P with $P(\varphi) > 0$,

$$U_P(\psi) \le U_P(\varphi) + U_P(\varphi \to \psi)$$

Proof (on blackboard).

Paradoxes of Material Implication Avoided Recall:

$$\varphi_1, \dots, \varphi_n \models_P \psi$$
 iff $\forall P : U_P(\varphi_1) + \dots + U_P(\varphi_n) \ge U_P(\psi)$

For a single premise φ :

Indicative Conditionals

$$\varphi \models_P \psi \quad \text{iff} \quad \forall P: \ U_P(\varphi) \ge U_P(\psi) \quad \Leftrightarrow \quad \forall P: \ P(\varphi) \le P(\psi)$$

 $P(p \to q) = P(q \mid p)$. We can choose a probability assignment with P(q) = 0.9 but $P(q \mid p) = 0.1$. For example:

$$P(p \land q) = 0.01, \ P(p \land \neg q) = 0.09, \ P(\neg p \land q) = 0.89, \ P(\neg p \land \neg q) = 0.01.$$

Then P(q) = 0.9 and $P(p \to q) = P(q \mid p) = 0.01/0.1 = 0.1$.

So:

$$U_P(q) = 0.1 < 0.9 = U_P(p \to q)$$

showing $q \not\models_P p \to q$.

Finding Invalidities in \models_P

To show that

$$\varphi_1,\ldots,\varphi_n\not\models_P\psi$$

we must find a probability function P such that

$$U_P(\varphi_1) + \dots + U_P(\varphi_n) < U_P(\psi)$$

In practice:

- ▶ Draw a Venn diagram for the relevant propositional variables.
- Assign probabilities to the regions.
- ightharpoonup Compute $U_P(\cdot)$ and check the inequality.

We use this method in the next examples of valid and invalid inferences.

Some Invalid Inferences

- 1. $p \supset q \not\models_P p \rightarrow q$
- **2.** $p \lor q \not\models_P \neg p \to q$
- 3. $p \rightarrow q \not\models_P \neg q \rightarrow \neg p$

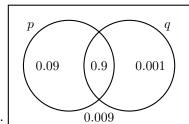
(no contraposition)

Lewis Triviality

For (1), take our earlier example with p = "card is red", q = "card is a king." We saw $P(p \supset q) = 7/13$ but $P(p \to q) = P(q \mid p) = 1/13$. So

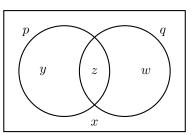
$$U_P(p \supset q) = 6/13 < 12/13 = U_P(p \to q)$$

showing $p \supset q \not\models_P p \rightarrow q$.



For (2) and (3), consider:

Indicative Conditionals



Let the regions be as in the diagram, so $y = P(p \land \neg q), z = P(p \land q),$ $w = P(\neg p \land q), x = P(\neg p \land \neg q).$

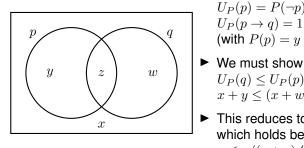
Lewis Triviality

- ▶ Then $P(p \supset q) = P(\neg p \lor q) = x + z + w.$ Hence $U_P(p \supset q) = 1 - P(p \supset q) =$ 1 - (x + z + w) = y.
- $ightharpoonup P(p
 ightarrow q) = P(q \mid p) = rac{z}{u+z}.$ So $U_P(p \to q) = 1 - P(p \to q) =$ $1 - \frac{z}{y + z} = \frac{y}{y + z}$.
- ► Since $y \ge 0$ and $0 < y + z \le 1$, we have $y \le \frac{y}{y+z}$, hence

$$U_P(p \supset q) < U_P(p \to q),$$

so the uncertainty of the conclusion is no greater than that of the premise.

Some Valid Inferences (II) - Modus Ponens



 $ightharpoonup p, p o q \models_P q.$

y > 0).

► From the diagram: $U_P(q) = P(\neg q) = x + y, \\ U_P(p) = P(\neg p) = x + w, \\ U_P(p \to q) = 1 - P(q \mid p) = y/(y+z) \\ \text{(with } P(p) = y + z > 0\text{)}.$

 $x+y \leq (x+w)+y/(y+z).$ This reduces to $y \leq w+y/(y+z)$, which holds because $w \geq 0$ and

y < y/(y+z) (since y+z < 1 and

 $U_P(q) \leq U_P(p) + U_P(p \rightarrow q)$, i.e.

► Hence Modus Ponens is valid for Adams conditionals: $p, p \rightarrow q \models_P q$.

A probability function P on a propositional language \mathcal{L} is a function $P:\mathcal{L}\to\mathbb{R}$ such that, for all $\varphi, \psi \in \mathcal{L}$:

1. $P(\varphi) > 0$.

Indicative Conditionals

- 2. If $\models \varphi$ (i.e. φ is a tautology), then $P(\varphi) = 1$.
- 3. If $\models \neg(\varphi \land \psi)$ (i.e. φ and ψ are mutually exclusive), then

$$P(\varphi \lor \psi) = P(\varphi) + P(\psi).$$

- ▶ Show that if φ and ψ are logically equivalent ($\models \varphi \leftrightarrow \psi$), then $P(\varphi) = P(\psi)$.
 - 4. If $\varphi \models \psi$, then $P(\varphi) < P(\psi)$.
 - 5. $P(\varphi) = P(\varphi \wedge \psi) + P(\varphi \wedge \neg \psi)$.
- ► Show that axiom (3) can be *replaced* by condition (5) More precisely, prove both directions:
 - (a) From (1)-(3) derive and (5).
 - (b) From (1), (2), (5) derive (3).
- Show that replacing (2) and (3) with (4) and (5) respectively does not give you an equivalent characterization.

Exercise: Threshold Consequence and the Lottery Paradox

Work in a purely propositional language (no \rightarrow in the object language). Fix a real number n with 0 < n < 1 and define threshold consequence:

$$\Gamma \models^{\geq n} \varphi \quad \text{iff} \quad \forall P : \forall \gamma \in \Gamma, \; P(\gamma) \geq n \; \Rightarrow \; P(\varphi) \geq n$$

- ▶ Show that $\Gamma \models^{\geq n} \varphi \Rightarrow \Gamma \models_{CL} \varphi$.
- ▶ Show that $\Gamma \models_{CL} \varphi \not\Rightarrow \Gamma \models^{\geq n} \varphi$.

Assume the following acceptance policy:

- (A1) You *accept* every sentence α such that $P(\alpha) \geq n$.
- (A2) Your set of accepted sentences is closed under $\models \geq n$: if Γ is a subset of vour accepted sentences and $\Gamma \models^{\geq n} \varphi$, then you also accept φ .

Exercise: Threshold Consequence and the Lottery Paradox

Consider a fair lottery with N tickets (exactly one ticket wins). Let L_i be the sentence "ticket i loses".

- (a) Compute $P(L_i)$ for each i. Show that for N large enough one has $P(L_i) \geq n$ for all i. (Conclude that, by (A1), it is acceptable (on this policy) to accept each L_i separately.)
- (b) What is the probability of the conjunction $L_1 \wedge \cdots \wedge L_N$? Explain why this conjunction is in fact *known* to be false in the lottery setup.

Indicative Conditionals

Exercise: Threshold Consequence and the Lottery Paradox

(c) Suppose that threshold consequence preserves the classical inference from many premises to their conjunction, i.e.

$$\{L_1,\ldots,L_N\} \models^{\geq n} (L_1 \wedge \cdots \wedge L_N).$$

Using (A1) and (A2), show that you are then forced to accept the sentence $L_1 \wedge \cdots \wedge L_N$.

(d) Explain why (a)-(c) reproduce the structure of the *lottery paradox*: each L_i is highly probable and acceptable, their conjunction is extremely improbable (indeed impossible), yet closure under consequence forces you to accept it. Which of (A1), (A2), or the expected behaviour of $\models^{\geq n}$ should we give up?

Exercise: Probabilistic consequence *P*

- ▶ Show that the axioms and rules of system P are sound with respect to probabilistic consequence \models_P .
- ▶ Show that transitivity fails: $p \rightarrow q, q \rightarrow r \not\models_P p \rightarrow r$

Exercise: Conditionals and material counterparts

Extend the language with an indicative conditional connective \rightarrow .²

For each formula φ (possibly with \rightarrow), define its *material counterpart* φ^* by:

$$(p)^* = p, \quad (\neg \varphi)^* = \neg \varphi^*, \quad (\varphi \land \psi)^* = \varphi^* \land \psi^*, \quad (\varphi \to \psi)^* = \varphi^* \supset \psi^*.$$

Let X be a finite set of formulas and $X^* := \{\chi^* : \chi \in X\}.$

- (a) Show: If $X \models_P \alpha$ and every formula in $X \cup \{\alpha\}$ is *factual* (i.e. contains no \rightarrow), then $X^* \models_{CL} \alpha^*$.
- (b) Suppose now that α is factual but X may contain conditionals. Show that if $X^* \models_{CL} \alpha^*$, then $X \models_P \alpha$.

²The following exercises (from this slide up to *Definability and new variables*) are fairly straightforward. They build on one another and follow basic facts stated in Adams's book, but they are a good way to check your understanding of probabilistic consequence.

Counterfactuals

Exercise: P-entailment and P-inconsistency

We write $\Gamma \models_P \varphi$ for probabilistic entailment. Say that a finite set Γ is P-inconsistent if

$$\Gamma \models_P (\theta \land \neg \theta)$$

for some propositional variable θ .

(a) Show that for any finite Γ and formula φ :

$$\Gamma \models_P \varphi$$
 iff $\Gamma \cup \{\neg \varphi\}$ is P-inconsistent.

(b) Deduce that a finite set Γ P-entails *every* formula iff Γ is P-inconsistent.

Show the following "proof by cases" principle is valid for \models_P :

If
$$\Gamma \cup \{\beta\} \models_P \alpha$$
 and $\Gamma \cup \{\neg \beta\} \models_P \alpha$, then $\Gamma \models_P \alpha$.

- (a) Give an intuitive probabilistic explanation of why this should hold, in terms of uncertainties $U_P(\cdot)$.
- (b) Prove it formally from the definition of \models_P

Exercise: Minimal p-premises for a conditional

Conditional Probability

Let φ be a conditional of the form $p \to q$ and let Γ be a finite set of formulas such that:

- ightharpoonup Γ contains at least one factual (non-conditional) formula;
- $ightharpoonup \Gamma \models_P (p \to q);$
- ▶ no proper subset of Γ P-entails $p \to q$.

Show that: $\Gamma \models_P p$ and $\Gamma \models_P q$.

Exercise: Definability and new variables

Let θ be a propositional variable that does *not* occur in Γ . Let φ be a purely factual formula (no \rightarrow).

Consider the biconditional $\theta \leftrightarrow \varphi$.

Show that

$$\Gamma \models_P (\theta \leftrightarrow \varphi)$$

iff either

- Γ is P-inconsistent, or
- \bullet $\theta \leftrightarrow \varphi$ is classically valid (i.e. $\models_{CL} \theta \leftrightarrow \varphi$).

Explain informally why Γ cannot "force" a non-trivial equivalence between a completely new variable θ and some factual sentence φ , unless Γ itself is already impossible (P-inconsistent).

Outline

- 1. Indicative Conditionals
- 2. Probability and Logic
- 3. Conditional Probability
- 4. Lewis Triviality

Indicative Conditionals

Conditional probability. For P(B) > 0:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$

Chain rule:

$$P(A \wedge B) = P(A \mid B) P(B) = P(B \mid A) P(A)$$

▶ Law of Total Probability. If B is any event with $P(B), P(\neg B)$ possibly nonzero, then

$$P(A) = P(A \mid B) P(B) + P(A \mid \neg B) P(\neg B),$$

whenever the conditional probabilities are defined.

▶ Law of Total Probability (partition). If $\{B_1, \ldots, B_n\}$ is a partition of Ω with $P(B_i) > 0$, then

$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) P(B_i)$$

Conditional Probabilities

Indicative Conditionals

Stalnaker's hypothesis (1970): for every conditional $\varphi \to \psi$ (possibly with embedded conditionals).

Conditional Probability

$$P(\varphi \to \psi) = P(\psi \mid \varphi), \text{ with } P(\varphi) > 0$$

Some embedded conditionals are indeed meaningful:

- (4) If (the cup broke, if it was dropped), it was fragile.
- (5)It is not the case that if I push this button, the light goes on.

Lewis (1976) showed that, together with some plausible principles, this leads to triviality: probabilities of conditionals collapse to unconditional probabilities of their consequents.

Lewis Triviality: Ingredients

One form of Lewis triviality (Lewis 1979, 1989) result uses these assumptions:

- 1. Adams thesis: $P(\varphi \to \psi) = P(\psi|\varphi)$ for all relevant φ, ψ .
- 2. Import-export: $\varphi \to (\psi \to \chi) \equiv (\varphi \land \psi) \to \chi$.
- 3. **Stalnaker hypothesis:** $\varphi \to \psi$ is a proposition (an element of the same algebra as ordinary sentences), so it can itself be conditionalized on.

Conditional Probability

Lewis shows that these together imply for φ, ψ :

$$P(\psi \mid \varphi) = P(\psi)$$

i.e. conditioning on φ never changes the probability of ψ , which is absurd in general.3

 $^{^{3}}$ Lewis notes that this is harmless if P never gives positive probability to more than two incompatible propositions. This means that P has at most four distinct probability values. Can you see why? Hint: think of a 1-circle/2-cell Venn partition.

- 1. Import-export: $\alpha \to (\varphi \to \psi) \equiv (\alpha \land \varphi) \to \psi$
- 2. By Adams thesis: $P(\varphi \to \psi \mid \alpha) = P(\psi \mid \alpha \land \varphi)$ This holds for all α .
- 3. Apply the Law of Total Probability to $\varphi \to \psi$ with respect to ψ :

$$P(\varphi \to \psi) = P(\varphi \to \psi \mid \psi) P(\psi) + P(\varphi \to \psi \mid \neg \psi) P(\neg \psi)$$

4. Using (2) with $\alpha = \psi$ and $\alpha = \neg \psi$:

$$P(\varphi \to \psi \mid \psi) = P(\psi \mid \varphi \land \psi)$$

$$P(\varphi \to \psi \mid \neg \psi) = P(\psi \mid \varphi \land \neg \psi)$$

5. So

Indicative Conditionals

$$P(\varphi \to \psi) = P(\psi \mid \varphi \land \psi) P(\psi) + P(\psi \mid \varphi \land \neg \psi) P(\neg \psi)$$

6. Adams thesis also gives $P(\varphi \to \psi) = P(\psi \mid \varphi)$, hence

$$P(\psi \mid \varphi) = P(\psi \mid \varphi \land \psi) P(\psi) + P(\psi \mid \varphi \land \neg \psi) P(\neg \psi)$$

7. But $P(\psi \mid \varphi \wedge \psi) = 1$ and $P(\psi \mid \varphi \wedge \neg \psi) = 0$, so

$$P(\psi \mid \varphi) = P(\psi)$$

What to Give Up?

Something has to go. Options:

Propositional status: deny that $\varphi \to \psi$ always denotes an ordinary proposition (Edgington 1995)

Conditional Probability

- ► Adams's simple thesis: adopt more complex probability-based accounts where $P(\varphi \to \psi)$ is not just $P(\psi \mid \varphi)$. (Douven 2016; Berto & Özgün 2021)
- Classical probability laws: modify the underlying probability theory (e.g. Ciardelli and Odmussen 2024)
- ▶ Non-probabilistic treatment of indicative conditionals (Angelika Kratzer, Anthony Gillies).

Outline

- 1. Indicative Conditionals
- 2. Probability and Logic
- 3. Conditional Probability
- 4. Lewis Triviality
- 5. Counterfactuals

 \blacktriangleright We often compare hypotheses H in the light of new evidence E.

Conditional Probability

- ▶ **Prior** $P_0(H)$: how plausible H is *before* learning E.
- ▶ **Posterior** $P_1(H)$: how plausible H is *after* learning E.

We update our belief in H by combining

- (1) how plausible H already was, with
- (2) how well H predicts the new evidence.

$$P_1(H) = P_0(H \mid E) = \frac{P_0(E \mid H) P_0(H)}{P_0(E)}$$

ightharpoonup Prior $P_0(H)$

Indicative Conditionals

- ▶ **Likelihood** $P_0(E \mid H)$: how unsurprising E would be if H were true.
- **Normalization** $P_0(E)$: rescales so posteriors add up to 1 across competing hypotheses.

Indicative Conditionals

A counterfactual can function as an epistemic past tense: after new evidence is learned, we assess $\varphi \rightsquigarrow \psi$ by looking to the *prior* assertability of the corresponding indicative.

$$P_1(\varphi \leadsto \psi) = P_0(\psi \mid \varphi)$$
 (prior conditional probability hypothesis).

Let C be "the urn is type C" and Y be "the ball is yellow".

$$P_0(C) = P_0(\neg C) = \frac{1}{2}, \quad P_0(\neg Y \mid C) = 0.01, \quad P_0(\neg Y \mid \neg C) = 0.80.$$

You draw a non-yellow ball. Then:

$$\frac{P_1(\neg C)}{P_1(C)} = \frac{P_0(\neg C)}{P_0(C)} \cdot \frac{P_0(\neg Y \mid \neg C)}{P_0(\neg Y \mid C)} = 80.$$

It is natural here to hear $P_0(\neg Y \mid C)$ as an *inverse-prior* probability that matches a counterfactual gloss: if the urn were C, a yellow ball would not have been drawn.

Generalizing: The Hypothetical Epistemic Past

- ► The Epistemic Past idea: a counterfactual can reflect what the corresponding indicative would have been assertible earlier.
- ▶ But sometimes there is no *actual* earlier standpoint from which anyone could reasonably assert the indicative.
- In such cases, the counterfactual looks to a hypothetical epistemic past.

If Napoleon had been kept under stricter guard on Elba, he would not have escaped, and Waterloo would never have happened.

- ► No one plausibly occupied the relevant *actual* prior position.
- ➤ Yet one could occupy a *counterfactual* prior position where the corresponding indicative would be assertible.

The Button-and-Light Counterexample

Two buttons, A and B. The light L goes on iff exactly one button was pushed:

$$L \equiv (A \land \neg B) \lor (\neg A \land B).$$

Priors:

$$P_0(A) = \frac{1}{1000}, \qquad P_0(B) = \frac{1}{1000000}.$$

Assuming that $P_0(\neg A \mid B) = P_0(\neg A)$ and $P_0(\neg B \mid A) = P_0(\neg B)$:

$$P_0(L \mid B) = P_0(\neg A) = 0.999,$$
 $P_0(L \mid A) = P_0(\neg B) = 0.9999999.$
$$\frac{P_0(B)}{P_0(A)} = 0.001.$$

$$P_0(\neg L \mid B) = P_0(A) = 0.001.$$

So the simple epistemic-past identification would make $B \rightsquigarrow \neg L \ \textit{very}$ unlikely.

The Button-and-Light Counterexample

You learn that the light is on.

Since $A \wedge L \equiv A \wedge \neg B$ and $B \wedge L \equiv B \wedge \neg A$.

$$\frac{P_1(B)}{P_1(A)} = \frac{P_0(B \land \neg A)}{P_0(A \land \neg B)}.$$

This yields:

Indicative Conditionals

$$\frac{P_1(B)}{P_1(A)} = \frac{P_0(B)}{P_0(A)} \cdot \frac{P_0(\neg A)}{P_0(\neg B)} = 0.001 \cdot \frac{0.999}{0.999999} = \frac{999}{999999} = \frac{1}{1001}.$$

So, upon observing L, it is about 1001 times likelier that A was pushed than B.

We are inclined to affirm $B \rightsquigarrow \neg L$, but the simple epistemic-past hypothesis would tie this to $P_0(\neg L \mid B) = 0.001$. So the epistemic past identification breaks.

Assume mutually exclusive/exhaustive states S_1, \ldots, S_n (causally independent of B) that, together with B, determine $\neg L$. Then:

$$P(B \leadsto \neg L) = \sum_{i=1}^{n} P_1(S_i) P_0(B \land S_i \leadsto \neg L).$$

So after what you have learned, you evaluate 'If B, then not L' by averaging over the different background possibilities, weighted by how likely they now seem.

Take $S_1 = A$, $S_2 = \neg A$.

$$P_0(B \land A \leadsto \neg L) = 1, \qquad P_0(B \land \neg A \leadsto \neg L) = 0,$$

so

Indicative Conditionals

$$P(B \leadsto \neg L) = P_1(A).$$

And indeed

$$P_1(A) = P_0(A \mid L) \approx 1.$$

matching the strong post-observation counterfactual evaluation.